less than 1 minute read


image

Image Source

  1. Understanding Business Problems
  2. Data Collection
  3. Data Wrangling and Preparation
    • Missing values
    • Duplicates
    • Inconsistent formatting
    • Improper formatting
  4. Exploratory Data Analysis (EDA)
    • Univariate
    • Bivariate
    • Outliers
    • Variable transformation
    • Feature engineering
    • Correlation analysis
  5. Model Selection, Building and Evaluation
  6. Model Performance Communication
  7. Model Deployment and Maintenance

References

  1. Data Science 101 : Life Cycle of a Data Science Project
  2. Introduction to Life Cycle of Data Science projects